Initial, very basic framework for running comparison tests
This commit is contained in:
commit
51cc5d1d30
10 changed files with 444 additions and 0 deletions
0
models/__init__.py
Normal file
0
models/__init__.py
Normal file
30
models/base_corruption.py
Normal file
30
models/base_corruption.py
Normal file
|
|
@ -0,0 +1,30 @@
|
|||
from models.base_dataset import BaseDataset
|
||||
|
||||
|
||||
class BaseCorruption:
|
||||
"""
|
||||
Base corruption model that is not implemented.
|
||||
"""
|
||||
name = "BaseCorruption"
|
||||
|
||||
def __init__(self, name: str = None):
|
||||
if name is not None:
|
||||
self.name = name
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.name}"
|
||||
|
||||
@classmethod
|
||||
def corrupt(cls, dataset: BaseDataset) -> BaseDataset:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class NoCorruption(BaseCorruption):
|
||||
"""
|
||||
Corruption model that does not corrupt the dataset at all.
|
||||
"""
|
||||
name = "No corruption"
|
||||
|
||||
@classmethod
|
||||
def corrupt(cls, dataset: BaseDataset) -> BaseDataset:
|
||||
return dataset
|
||||
71
models/base_dataset.py
Normal file
71
models/base_dataset.py
Normal file
|
|
@ -0,0 +1,71 @@
|
|||
import math
|
||||
from typing import Union, Optional
|
||||
|
||||
|
||||
class BaseDataset:
|
||||
|
||||
# Train amount is either a proportion of data that should be used as training data (between 0 and 1),
|
||||
# or an integer indicating how many entries should be used as training data (e.g. 1000, 2000)
|
||||
#
|
||||
# So 0.2 would mean 20% of all data in the dataset (200 if dataset is 1000 entries) is used as training data,
|
||||
# and 1000 would mean that 1000 entries are used as training data, regardless of the size of the dataset.
|
||||
TRAIN_AMOUNT = 0.2
|
||||
|
||||
name = "BaseDataset"
|
||||
_source_path = None
|
||||
_data = None
|
||||
_trainset: 'BaseDataset' = None
|
||||
_testset: 'BaseDataset' = None
|
||||
|
||||
def __init__(self, name: Optional[str] = None):
|
||||
if name is not None:
|
||||
self.name = name
|
||||
|
||||
def __str__(self):
|
||||
if self._data is not None:
|
||||
return f"{self.name} ({len(self._data)} objects)"
|
||||
else:
|
||||
return f"{self.name} (no data loaded)"
|
||||
|
||||
@classmethod
|
||||
def get_new(cls, name: str, data: Optional[list] = None, source_path: Optional[str] = None,
|
||||
train_set: Optional['BaseDataset'] = None, test_set: Optional['BaseDataset'] = None):
|
||||
dset = cls()
|
||||
dset._data = data
|
||||
dset._source_path = source_path
|
||||
dset._trainset = train_set
|
||||
dset._testset = test_set
|
||||
return dset
|
||||
|
||||
def load(self, name: str, path: str):
|
||||
self.name = str
|
||||
self._source_path = path
|
||||
raise NotImplementedError()
|
||||
|
||||
def _subdivide(self, amount: Union[int, float]):
|
||||
if self._data is None:
|
||||
raise ValueError("Cannot subdivide! Data not loaded, call `load()` first to load data")
|
||||
|
||||
if isinstance(amount, float) and 0 < amount < 1:
|
||||
size_train = math.floor(len(self._data) * amount)
|
||||
train_data = self._data[:size_train]
|
||||
test_data = self._data[size_train:]
|
||||
elif isinstance(amount, int) and amount > 0:
|
||||
train_data = self._data[:amount]
|
||||
test_data = self._data[amount:]
|
||||
else:
|
||||
raise ValueError("Cannot subdivide! Invalid amount given, "
|
||||
"must be either a fraction between 0 and 1, or an integer.")
|
||||
|
||||
self._trainset = self.__class__.get_new(name=f"{self.name} Training", data=train_data, source_path=self._source_path)
|
||||
self._testset = self.__class__.get_new(name=f"{self.name} Testing", data=test_data, source_path=self._source_path)
|
||||
|
||||
def get_train(self) -> 'BaseDataset':
|
||||
if not self._trainset or not self._testset:
|
||||
self._subdivide(self.TRAIN_AMOUNT)
|
||||
return self._trainset
|
||||
|
||||
def get_test(self) -> 'BaseDataset':
|
||||
if not self._trainset or not self._testset:
|
||||
self._subdivide(self.TRAIN_AMOUNT)
|
||||
return self._testset
|
||||
20
models/base_encoder.py
Normal file
20
models/base_encoder.py
Normal file
|
|
@ -0,0 +1,20 @@
|
|||
from typing import Optional
|
||||
|
||||
from models.base_dataset import BaseDataset
|
||||
|
||||
|
||||
class BaseEncoder:
|
||||
name = "BaseEncoder"
|
||||
|
||||
def __init__(self, name: Optional[str] = None):
|
||||
if name is not None:
|
||||
self.name = name
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.name}"
|
||||
|
||||
def train(self, dataset: BaseDataset):
|
||||
raise NotImplementedError()
|
||||
|
||||
def test(self, dataset: BaseDataset):
|
||||
raise NotImplementedError()
|
||||
29
models/test_run.py
Normal file
29
models/test_run.py
Normal file
|
|
@ -0,0 +1,29 @@
|
|||
from models.base_corruption import BaseCorruption
|
||||
from models.base_dataset import BaseDataset
|
||||
from models.base_encoder import BaseEncoder
|
||||
|
||||
|
||||
class TestRun:
|
||||
dataset: BaseDataset = None
|
||||
encoder: BaseEncoder = None
|
||||
corruption: BaseCorruption = None
|
||||
|
||||
def __init__(self, dataset: BaseDataset, encoder: BaseEncoder, corruption: BaseCorruption):
|
||||
self.dataset = dataset
|
||||
self.encoder = encoder
|
||||
self.corruption = corruption
|
||||
|
||||
def run(self):
|
||||
if self.dataset is None:
|
||||
raise ValueError("Cannot run test! Dataset is not specified.")
|
||||
if self.encoder is None:
|
||||
raise ValueError("Cannot run test! AutoEncoder is not specified.")
|
||||
if self.corruption is None:
|
||||
raise ValueError("Cannot run test! Corruption method is not specified.")
|
||||
return self._run()
|
||||
|
||||
def _run(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_metrics(self):
|
||||
raise NotImplementedError()
|
||||
Reference in a new issue