import logging from typing import Optional from models.base_encoder import BaseEncoder class BasicAutoEncoder(BaseEncoder): # Based on https://medium.com/pytorch/implementing-an-autoencoder-in-pytorch-19baa22647d1 name = "BasicAutoEncoder" def __init__(self, name: Optional[str] = None, input_shape: int = 0): self.log = logging.getLogger(self.__class__.__name__) # Call superclass to initialize parameters. super(BasicAutoEncoder, self).__init__(name, input_shape) # Network, optimizer and loss function are the same as defined in the base encoder.