RP_AutoEncoderComparison/models/base_encoder.py

173 lines
6.7 KiB
Python

import json
import logging
import os
import torch
from typing import Optional
from torchvision.utils import save_image
from config import TRAIN_TEMP_DATA_BASE_PATH, TEST_TEMP_DATA_BASE_PATH, MODEL_STORAGE_BASE_PATH
from models.base_dataset import BaseDataset
class BaseEncoder(torch.nn.Module):
# Based on https://medium.com/pytorch/implementing-an-autoencoder-in-pytorch-19baa22647d1
name = "BaseEncoder"
def __init__(self, name: Optional[str] = None, input_shape: int = 0):
super(BaseEncoder, self).__init__()
self.log = logging.getLogger(self.__class__.__name__)
if name is not None:
self.name = name
assert input_shape != 0, f"Encoder {self.__class__.__name__} input_shape parameter should not be 0"
self.input_shape = input_shape
# Default fallbacks (can be overridden by sub implementations)
# 4 layer NN, halving the input each layer
self.network = torch.nn.Sequential(
torch.nn.Linear(in_features=input_shape, out_features=input_shape // 2),
torch.nn.ReLU(),
torch.nn.Linear(in_features=input_shape // 2, out_features=input_shape // 4),
torch.nn.ReLU(),
torch.nn.Linear(in_features=input_shape // 4, out_features=input_shape // 2),
torch.nn.ReLU(),
torch.nn.Linear(in_features=input_shape // 2, out_features=input_shape)
)
# Use GPU acceleration if available
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Adam optimizer with learning rate 1e-3
self.optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
# Mean Squared Error loss function
self.loss_function = torch.nn.MSELoss()
def after_init(self):
self.log.info(f"Auto-encoder {self.__class__.__name__} initialized with {len(list(self.network.children()))} layers on {self.device.type}. Optimizer: {self.optimizer}, Loss function: {self.loss_function}")
def forward(self, features):
return self.network(features)
def save_model(self, filename):
torch.save(self.state_dict(), os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.model"))
with open(os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.meta"), 'w') as f:
f.write(json.dumps({
'name': self.name,
'input_shape': self.input_shape
}))
def load_model(self, filename=None):
if filename is None:
filename = f"{self.name}"
try:
loaded_model = torch.load(os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.model"), map_location=self.device)
self.load_state_dict(loaded_model)
self.to(self.device)
return True
except OSError as e:
self.log.error(f"Could not load model '{filename}': {e}")
return False
@classmethod
def create_model_from_file(cls, filename, device=None):
try:
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open(os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.meta")) as f:
model_kwargs = json.loads(f.read())
model = cls(**model_kwargs)
loaded_model = torch.load(os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.model"), map_location=device)
model.load_state_dict(loaded_model)
model.to(device)
return model
except OSError as e:
log = logging.getLogger(cls.__name__)
log.error(f"Could not load model '{filename}': {e}")
return None
def __str__(self):
return f"{self.name}"
def train_encoder(self, dataset: BaseDataset, epochs: int = 20, batch_size: int = 128, num_workers: int = 4):
self.log.debug("Getting training dataset DataLoader.")
train_loader = dataset.get_train_loader(batch_size=batch_size, num_workers=num_workers)
# Puts module in training mode.
self.log.debug("Putting model into training mode.")
self.train()
self.to(self.device, non_blocking=True)
self.loss_function.to(self.device, non_blocking=True)
losses = []
outputs = None
for epoch in range(epochs):
self.log.debug(f"Start training epoch {epoch}...")
loss = 0
for batch_features in train_loader:
# load batch features to the active device
batch_features = batch_features.to(self.device)
# reset the gradients back to zero
# PyTorch accumulates gradients on subsequent backward passes
self.optimizer.zero_grad()
# compute reconstructions
outputs = self(batch_features)
# compute training reconstruction loss
train_loss = self.loss_function(outputs, batch_features)
# compute accumulated gradients
train_loss.backward()
# perform parameter update based on current gradients
self.optimizer.step()
# add the mini-batch training loss to epoch loss
loss += train_loss.item()
# compute the epoch training loss
loss = loss / len(train_loader)
# display the epoch training loss
self.log.info("epoch : {}/{}, loss = {:.6f}".format(epoch + 1, epochs, loss))
losses.append(loss)
# Every 5 epochs, save a test image
if epoch % 5 == 0:
img = outputs.cpu().data
img = img.view(img.size(0), 3, 32, 32)
save_image(img, os.path.join(TRAIN_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_linear_ae_image{epoch}.png'))
return losses
def test_encoder(self, dataset: BaseDataset, batch_size: int = 128, num_workers: int = 4):
self.log.debug("Getting testing dataset DataLoader.")
test_loader = dataset.get_test_loader(batch_size=batch_size, num_workers=num_workers)
self.log.debug(f"Start testing...")
i = 0
for batch in test_loader:
img = batch.view(batch.size(0), 3, 32, 32)
save_image(img, os.path.join(TEST_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_test_input_{i}.png'))
# load batch features to the active device
batch = batch.to(self.device)
outputs = self(batch)
img = outputs.cpu().data
img = img.view(outputs.size(0), 3, 32, 32)
save_image(img, os.path.join(TEST_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_test_reconstruction_{i}.png'))
i += 1
break