RP_AutoEncoderComparison/models/mnist_dataset.py

59 lines
1.9 KiB
Python

import os
from typing import Optional
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image
from config import DATASET_STORAGE_BASE_PATH
from models.base_dataset import BaseDataset
class MNISTDataset(BaseDataset):
name = "MNIST"
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor()
])
def load(self, name: Optional[str] = None, path: Optional[str] = None):
if name is not None:
self.name = name
if path is not None:
self._source_path = path
train_dataset = MNIST(root=os.path.join(DATASET_STORAGE_BASE_PATH, self._source_path), train=True, download=True)
train_data = [x for x in train_dataset.data]
self._data = train_data
self._trainset = self.__class__.get_new(name=f"{self.name} Training", data=train_data[:],
source_path=self._source_path)
test_dataset = MNIST(root=os.path.join(DATASET_STORAGE_BASE_PATH, self._source_path), train=False, download=True)
test_data = [x for x in test_dataset.data]
self._data.extend(test_data)
self._testset = self.__class__.get_new(name=f"{self.name} Testing", data=test_data[:],
source_path=self._source_path)
self.log.info(f"Loaded {self}, divided into {self._trainset} and {self._testset}")
def __getitem__(self, item):
# Get image data
img = self._data[item]
# Run transforms
if self.transform is not None:
img = self.transform(img)
# Reshape the 28x28x1 image to a 1x784 array for the Linear layer
img = img.view(-1, 28 * 28)
return img
def save_batch_to_sample(self, batch, filename):
img = batch.view(batch.size(0), 1, 28, 28)
save_image(img, f"{filename}.png")