RP_AutoEncoderComparison/models/base_dataset.py

117 lines
4.7 KiB
Python

import math, logging
from typing import Union, Optional
import torch
from torch.utils.data import Dataset
class BaseDataset(Dataset):
# Train amount is either a proportion of data that should be used as training data (between 0 and 1),
# or an integer indicating how many entries should be used as training data (e.g. 1000, 2000)
#
# So 0.2 would mean 20% of all data in the dataset (200 if dataset is 1000 entries) is used as training data,
# and 1000 would mean that 1000 entries are used as training data, regardless of the size of the dataset.
TRAIN_AMOUNT = 0.2
name = "BaseDataset"
_source_path = None
_data = None
_labels = None
_trainset: 'BaseDataset' = None
_testset: 'BaseDataset' = None
transform = None
def __init__(self, name: Optional[str] = None, path: Optional[str] = None):
self.log = logging.getLogger(self.__class__.__name__)
if name is not None:
self.name = name
if path is not None:
self._source_path = path
def __str__(self):
if self._data is not None:
return f"{self.name} ({len(self._data)} objects)"
else:
return f"{self.name} (no data loaded)"
# __len__ so that len(dataset) returns the size of the dataset.
# __getitem__ to support the indexing such that dataset[i] can be used to get ith sample
def __len__(self):
return len(self._data)
def __getitem__(self, item):
return self.transform(self._data[item]) if self.transform else self._data[item]
@classmethod
def get_new(cls, name: str, data: Optional[list] = None, labels: Optional[dict] = None, source_path: Optional[str] = None,
train_set: Optional['BaseDataset'] = None, test_set: Optional['BaseDataset'] = None):
dset = cls()
dset.name = name
dset._data = data
dset._labels = labels
dset._source_path = source_path
dset._trainset = train_set
dset._testset = test_set
return dset
def load(self, name: Optional[str] = None, path: Optional[str] = None):
if name is not None:
self.name = name
if path is not None:
self._source_path = path
raise NotImplementedError()
def _subdivide(self, amount: Union[int, float]):
if self._data is None:
raise ValueError("Cannot subdivide! Data not loaded, call `load()` first to load data")
if isinstance(amount, float) and 0 < amount < 1:
size_train = math.floor(len(self._data) * amount)
train_data = self._data[:size_train]
test_data = self._data[size_train:]
elif isinstance(amount, int) and amount > 0:
train_data = self._data[:amount]
test_data = self._data[amount:]
else:
raise ValueError("Cannot subdivide! Invalid amount given, "
"must be either a fraction between 0 and 1, or an integer.")
self._trainset = self.__class__.get_new(name=f"{self.name} Training", data=train_data, labels=self._labels, source_path=self._source_path)
self._testset = self.__class__.get_new(name=f"{self.name} Testing", data=test_data, labels=self._labels, source_path=self._source_path)
def has_train(self):
return self._trainset is not None
def has_test(self):
return self._testset is not None
def get_train(self) -> 'BaseDataset':
if not self._trainset or not self._testset:
self._subdivide(self.TRAIN_AMOUNT)
return self._trainset
def get_test(self) -> 'BaseDataset':
if not self._trainset or not self._testset:
self._subdivide(self.TRAIN_AMOUNT)
return self._testset
def get_loader(self, dataset, batch_size: int = 128, num_workers: int = 4) -> torch.utils.data.DataLoader:
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False,
num_workers=num_workers, pin_memory=True)
def get_train_loader(self, batch_size: int = 128, num_workers: int = 4) -> torch.utils.data.DataLoader:
return self.get_loader(self.get_train(), batch_size=batch_size, num_workers=num_workers)
def get_test_loader(self, batch_size: int = 128, num_workers: int = 4) -> torch.utils.data.DataLoader:
return self.get_loader(self.get_test(), batch_size=batch_size, num_workers=num_workers)
def save_batch_to_sample(self, batch, filename):
# Save a batch of tensors to a sample file for comparison (no implementation for base dataset)
pass
def calculate_score(self, originals, reconstruction, device):
# Calculate the score given an uncorrupted and a corrupted batch. (no implementation for base dataset)
pass