Add mssim score calculation, corrupt test data before testing, clip noise to avoid invalid values

This commit is contained in:
Kevin Alberts 2021-01-17 16:59:14 +01:00
parent bc95548ae3
commit f76374111c
Signed by: Kurocon
GPG key ID: BCD496FEBA0C6BC1
7 changed files with 65 additions and 8 deletions

View file

@ -110,3 +110,7 @@ class BaseDataset(Dataset):
# Save a batch of tensors to a sample file for comparison (no implementation for base dataset)
pass
def calculate_score(self, originals, reconstruction, device):
# Calculate the score given an uncorrupted and a corrupted batch. (no implementation for base dataset)
pass

View file

@ -6,10 +6,12 @@ import torch
from typing import Optional
from pytorch_msssim import ssim
from torch.nn.modules.loss import _Loss
from torchvision.utils import save_image
from config import TRAIN_TEMP_DATA_BASE_PATH, TEST_TEMP_DATA_BASE_PATH, MODEL_STORAGE_BASE_PATH
from models.base_corruption import BaseCorruption
from models.base_dataset import BaseDataset
@ -175,31 +177,46 @@ class BaseEncoder(torch.nn.Module):
return losses
def test_encoder(self, dataset: BaseDataset, batch_size: int = 128, num_workers: int = 4):
def test_encoder(self, dataset: BaseDataset, corruption: BaseCorruption, batch_size: int = 128, num_workers: int = 4):
self.log.debug("Getting testing dataset DataLoader.")
test_loader = dataset.get_test_loader(batch_size=batch_size, num_workers=num_workers)
self.log.debug(f"Start testing...")
avg_scores = []
i = 0
for batch in test_loader:
dataset.save_batch_to_sample(
batch=batch,
filename=os.path.join(TEST_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_test_input_{i}')
f'{self.name}_{dataset.name}_test_input_{i}_uncorrupted')
)
corrupted_batch = torch.tensor([corruption.corrupt_image(i) for i in batch], dtype=torch.float32)
dataset.save_batch_to_sample(
batch=corrupted_batch,
filename=os.path.join(TEST_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_test_input_{i}_corrupted')
)
# load batch features to the active device
batch = batch.to(self.device)
outputs = self.process_outputs_for_testing(self(batch))
corrupted_batch = corrupted_batch.to(self.device)
outputs = self.process_outputs_for_testing(self(corrupted_batch))
img = outputs.cpu().data
dataset.save_batch_to_sample(
batch=img,
filename=os.path.join(TEST_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_test_reconstruction_{i}')
)
batch_score = dataset.calculate_score(batch, img, self.device)
avg_scores.append(batch_score)
i += 1
break
avg_score = sum(avg_scores) / len(avg_scores)
# self.log.warning(f"Testing results - Average score: {avg_score}")
print(f"Testing results - Average score: {avg_score}")
def process_loss(self, train_loss, features, outputs) -> _Loss:
return train_loss

View file

@ -3,6 +3,7 @@ import os
from typing import Optional
import numpy
from pytorch_msssim import ssim
from torchvision import transforms
from torchvision.utils import save_image
@ -70,6 +71,28 @@ class Cifar10Dataset(BaseDataset):
return img
def get_as_image_array(self, item):
# Get image data
img = self._data[item]
img = img.reshape((3, 1024))
# Run transforms
if self.transform is not None:
img = self.transform(img)
# Reshape the 32x32x3 image to a 1x3072 array for the Linear layer
img = img.view(-1, 3, 32, 32)
return img
def save_batch_to_sample(self, batch, filename):
img = batch.view(batch.size(0), 3, 32, 32)
save_image(img, f"{filename}.png")
def calculate_score(self, originals, reconstruction, device):
# Calculate SSIM
originals = originals.view(originals.size(0), 3, 32, 32).to(device)
reconstruction = reconstruction.view(reconstruction.size(0), 3, 32, 32).to(device)
batch_average_score = ssim(originals, reconstruction, data_range=1, size_average=True)
return batch_average_score

View file

@ -1,3 +1,4 @@
import torch
from torch import Tensor
from models.base_corruption import BaseCorruption
@ -6,11 +7,13 @@ import numpy
def add_noise(image):
if isinstance(image, Tensor):
image = image.numpy()
image = image.astype(numpy.float32)
mean, variance = 0, 0.1
sigma = variance ** 0.5
noise = numpy.random.normal(mean, sigma, image.shape).reshape(image.shape)
return image + noise
return numpy.clip(image + noise, 0, 1)
class GaussianCorruption(BaseCorruption):
@ -25,7 +28,8 @@ class GaussianCorruption(BaseCorruption):
@classmethod
def corrupt_dataset(cls, dataset: BaseDataset) -> BaseDataset:
data = list(map(add_noise, dataset))
data = [cls.corrupt_image(x) for x in dataset]
# data = list(map(add_noise, dataset._data))
train_set = cls.corrupt_dataset(dataset.get_train()) if dataset.has_train() else None
test_set = cls.corrupt_dataset(dataset.get_test()) if dataset.has_test() else None
return dataset.__class__.get_new(

View file

@ -2,6 +2,7 @@ import os
from typing import Optional
from pytorch_msssim import ssim
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image
@ -56,3 +57,10 @@ class MNISTDataset(BaseDataset):
def save_batch_to_sample(self, batch, filename):
img = batch.view(batch.size(0), 1, 28, 28)
save_image(img, f"{filename}.png")
def calculate_score(self, originals, reconstruction, device):
# Calculate SSIM
originals = originals.view(originals.size(0), 1, 28, 28).to(device)
reconstruction = reconstruction.view(reconstruction.size(0), 1, 28, 28).to(device)
batch_average_score = ssim(originals, reconstruction, data_range=1, size_average=True)
return batch_average_score

View file

@ -59,7 +59,7 @@ class TestRun:
# Test encoder
self.log.info("Testing auto-encoder...")
self.encoder.test_encoder(self.dataset, num_workers=multiprocessing.cpu_count() - 1)
self.encoder.test_encoder(self.dataset, corruption=self.corruption, num_workers=multiprocessing.cpu_count() - 1)
self.log.info("Done!")

View file

@ -2,4 +2,5 @@ torch==1.7.1
torchvision==0.8.2
torchaudio===0.7.2
tabulate
matplotlib
matplotlib
pytorch-msssim