RP_AutoEncoderComparison/models/base_encoder.py

234 lines
9.4 KiB
Python

import json
import logging
import os
import torch
from typing import Optional
from pytorch_msssim import ssim
from torch.nn.modules.loss import _Loss
from torchvision.utils import save_image
from config import TRAIN_TEMP_DATA_BASE_PATH, TEST_TEMP_DATA_BASE_PATH, MODEL_STORAGE_BASE_PATH
from models.base_corruption import BaseCorruption
from models.base_dataset import BaseDataset
class BaseEncoder(torch.nn.Module):
# Based on https://medium.com/pytorch/implementing-an-autoencoder-in-pytorch-19baa22647d1
name = "BaseEncoder"
def __init__(self, name: Optional[str] = None, input_shape: int = 0):
super(BaseEncoder, self).__init__()
self.log = logging.getLogger(self.__class__.__name__)
if name is not None:
self.name = name
assert input_shape != 0, f"Encoder {self.__class__.__name__} input_shape parameter should not be 0"
self.input_shape = input_shape
# Default fallbacks (can be overridden by sub implementations)
# 4 layer NN, halving the input each layer
self.network = torch.nn.Sequential(
torch.nn.Linear(in_features=input_shape, out_features=input_shape // 2),
torch.nn.ReLU(),
torch.nn.Linear(in_features=input_shape // 2, out_features=input_shape // 4),
torch.nn.ReLU(),
torch.nn.Linear(in_features=input_shape // 4, out_features=input_shape // 2),
torch.nn.ReLU(),
torch.nn.Linear(in_features=input_shape // 2, out_features=input_shape),
torch.nn.ReLU()
)
# Use GPU acceleration if available
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Adam optimizer with learning rate 1e-3
self.optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
# Mean Squared Error loss function
self.loss_function = torch.nn.MSELoss()
def after_init(self):
self.log.info(f"Auto-encoder {self.__class__.__name__} initialized with "
f"{len(list(self.network.children())) if self.network else 'custom'} layers on "
f"{self.device.type}. Optimizer: {self.optimizer.__class__.__name__}, "
f"Loss function: {self.loss_function.__class__.__name__}")
def forward(self, features):
return self.network(features)
def save_model(self, filename):
torch.save(self.state_dict(), os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.model"))
with open(os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.meta"), 'w') as f:
f.write(json.dumps({
'name': self.name,
'input_shape': self.input_shape
}))
def load_model(self, filename=None):
if filename is None:
filename = f"{self.name}"
try:
loaded_model = torch.load(os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.model"), map_location=self.device)
self.load_state_dict(loaded_model)
self.to(self.device)
return True
except OSError as e:
self.log.error(f"Could not load model '{filename}': {e}")
return False
@classmethod
def create_model_from_file(cls, filename, device=None):
try:
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open(os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.meta")) as f:
model_kwargs = json.loads(f.read())
model = cls(**model_kwargs)
loaded_model = torch.load(os.path.join(MODEL_STORAGE_BASE_PATH, f"{filename}.model"), map_location=device)
model.load_state_dict(loaded_model)
model.to(device)
return model
except OSError as e:
log = logging.getLogger(cls.__name__)
log.error(f"Could not load model '{filename}': {e}")
return None
def __str__(self):
return f"{self.name}"
def train_encoder(self, dataset: BaseDataset, epochs: int = 20, batch_size: int = 128, num_workers: int = 4):
self.log.debug("Getting training dataset DataLoader.")
train_loader = dataset.get_train_loader(batch_size=batch_size, num_workers=num_workers)
# Puts module in training mode.
self.log.debug("Putting model into training mode.")
self.train()
self.to(self.device, non_blocking=True)
self.loss_function.to(self.device, non_blocking=True)
losses = []
outputs = None
for epoch in range(epochs):
self.log.debug(f"Start training epoch {epoch + 1}...")
loss = 0
for i, batch_features in enumerate(train_loader):
# # load batch features to the active device
# batch_features = batch_features.to(self.device)
# reset the gradients back to zero
# PyTorch accumulates gradients on subsequent backward passes
self.optimizer.zero_grad()
# Modify features used in training model (if necessary) and load to the active device
train_features = self.process_train_features(batch_features).to(self.device)
# compute reconstructions
outputs = self(train_features)
# Modify outputs used in loss function (if necessary) and load to the active device
outputs_for_loss = self.process_outputs_for_loss_function(outputs).to(self.device)
# Modify features used in comparing in loss function (if necessary) and load to the active device
compare_features = self.process_compare_features(batch_features).to(self.device)
# compute training reconstruction loss
train_loss = self.loss_function(outputs_for_loss, compare_features)
# Process loss if necessary (default implementation does nothing)
train_loss = self.process_loss(train_loss, compare_features, outputs)
# compute accumulated gradients
train_loss.backward()
# perform parameter update based on current gradients
self.optimizer.step()
# add the mini-batch training loss to epoch loss
loss += train_loss.item()
# Print progress every 50 batches
if i % 50 == 0:
self.log.debug(f" progress: [{i * len(batch_features)}/{len(train_loader.dataset)} "
f"({(100 * i / len(train_loader)):.0f}%)]")
# compute the epoch training loss
loss = loss / len(train_loader)
# display the epoch training loss
self.log.info("epoch : {}/{}, loss = {:.6f}".format(epoch + 1, epochs, loss))
losses.append(loss)
# Every 5 epochs, save a test image
if epoch % 5 == 0:
img = self.process_outputs_for_testing(outputs).cpu().data
dataset.save_batch_to_sample(
batch=img,
filename=os.path.join(TRAIN_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_linear_ae_image{epoch}.png')
)
return losses
def test_encoder(self, dataset: BaseDataset, corruption: BaseCorruption, batch_size: int = 128, num_workers: int = 4):
self.log.debug("Getting testing dataset DataLoader.")
test_loader = dataset.get_test_loader(batch_size=batch_size, num_workers=num_workers)
self.log.debug(f"Start testing...")
avg_scores = []
i = 0
for batch in test_loader:
dataset.save_batch_to_sample(
batch=batch,
filename=os.path.join(TEST_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_test_input_{i}_uncorrupted')
)
corrupted_batch = torch.tensor([corruption.corrupt_image(i) for i in batch], dtype=torch.float32)
dataset.save_batch_to_sample(
batch=corrupted_batch,
filename=os.path.join(TEST_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_test_input_{i}_corrupted')
)
# load batch features to the active device
corrupted_batch = corrupted_batch.to(self.device)
outputs = self.process_outputs_for_testing(self(corrupted_batch))
img = outputs.cpu().data
dataset.save_batch_to_sample(
batch=img,
filename=os.path.join(TEST_TEMP_DATA_BASE_PATH,
f'{self.name}_{dataset.name}_test_reconstruction_{i}')
)
batch_score = dataset.calculate_score(batch, img, self.device)
avg_scores.append(batch_score)
i += 1
break
avg_score = sum(avg_scores) / len(avg_scores)
# self.log.warning(f"Testing results - Average score: {avg_score}")
print(f"Testing results - Average score: {avg_score}")
def process_loss(self, train_loss, features, outputs) -> _Loss:
return train_loss
def process_train_features(self, features):
return features
def process_compare_features(self, features):
return features
def process_outputs_for_loss_function(self, outputs):
return outputs
def process_outputs_for_testing(self, outputs):
return outputs