RP_AutoEncoderComparison/models/cifar10_dataset.py

99 lines
3.2 KiB
Python

import os
from typing import Optional
import numpy
from pytorch_msssim import ssim
from torchvision import transforms
from torchvision.utils import save_image
from config import DATASET_STORAGE_BASE_PATH
from models.base_dataset import BaseDataset
class Cifar10Dataset(BaseDataset):
name = "CIFAR-10"
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor()
])
def unpickle(self, filename):
import pickle
with open(filename, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
def load(self, name: Optional[str] = None, path: Optional[str] = None):
if name is not None:
self.name = name
if path is not None:
self._source_path = path
self._data = []
for i in range(1, 6):
data = self.unpickle(os.path.join(DATASET_STORAGE_BASE_PATH,
self._source_path,
f"data_batch_{i}"))
self._data.extend(data[b'data'])
self._trainset = self.__class__.get_new(name=f"{self.name} Training", data=self._data[:],
source_path=self._source_path)
test_data = self.unpickle(os.path.join(DATASET_STORAGE_BASE_PATH,
self._source_path,
f"test_batch"))
self._data.extend(test_data[b'data'])
self._testset = self.__class__.get_new(name=f"{self.name} Testing", data=test_data[b'data'][:],
source_path=self._source_path)
self.log.info(f"Loaded {self}, divided into {self._trainset} and {self._testset}")
def __getitem__(self, item):
# Get image data
img = self._data[item]
img_r, img_g, img_b = img.reshape((3, 1024))
img_r = img_r.reshape((32, 32))
img_g = img_g.reshape((32, 32))
img_b = img_b.reshape((32, 32))
# Reshape to 32x32x3 image
img = numpy.stack((img_r, img_g, img_b), axis=2)
# Run transforms
if self.transform is not None:
img = self.transform(img)
# Reshape the 32x32x3 image to a 1x3072 array for the Linear layer
img = img.view(-1, 32 * 32 * 3)
return img
def get_as_image_array(self, item):
# Get image data
img = self._data[item]
img = img.reshape((3, 1024))
# Run transforms
if self.transform is not None:
img = self.transform(img)
# Reshape the 32x32x3 image to a 1x3072 array for the Linear layer
img = img.view(-1, 3, 32, 32)
return img
def save_batch_to_sample(self, batch, filename):
img = batch.view(batch.size(0), 3, 32, 32)
save_image(img, f"{filename}.png")
def calculate_score(self, originals, reconstruction, device):
# Calculate SSIM
originals = originals.view(originals.size(0), 3, 32, 32).to(device)
reconstruction = reconstruction.view(reconstruction.size(0), 3, 32, 32).to(device)
batch_average_score = ssim(originals, reconstruction, data_range=1, size_average=True)
return batch_average_score